electronic properties of titanium using density functional theory

Authors

m. jafari

abstract

in the present work, the electronic properties of titanium were studied in three phases of α, β and ω using the density function theory (dft). the full potential augmented plane wave plus local orbital (flapw+lo) method was applied using the generalized gradient approximation. the calculated total energies showed that omega phase was more stable than the two other phases. the largest electrical conductance was related to the β phase. these results were in good agreement with the findings of the previous works. in addition, these results showed that an increase in volume would lead to a decrease in energy; thus, causing an increase in the electrical conduction.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

Electronic Properties of Hydrogen Adsorption on the Silicon- Substituted C20 Fullerenes: A Density Functional Theory Calculations

The B3LYP/6-31++G** density functional calculations were used to obtain minimum geometries and interaction energies between the molecular hydrogen and nanostructures of fullerenes, C20 (cage), C20 (bowl), C19Si (bowl, penta), C19Si (bowl, hexa). The H2 molecule is set as adsorbed in the distance of 3Å at vertical position from surface above the pentagonal and hexagonal sites of nanostructures. ...

full text

Electronic properties of hydrogenated porous Graphene based nanoribbons: A density functional theory study

The structural and electronic properties of the hydrogenated porous graphene nanoribbons were studied by using density functional theory calculations. The results show that the hydrogenated porous graphene nanoribbons are energetically stable. The effects of ribbon type and ribbon width on the electronic properties of these nanoribbons were investigated. It was found that both armchair and zigz...

full text

Investigation of Nickle nanoclusters properties by density functional theory

Clusters play important role for understanding and transferring microscopic to macroscopic properties.Geometric and electron properties of Small nickel clusters up to the tetramer has been investigated by Density Functional Theory (DFT). Raising the number of nickel clusters atoms were indicated decreasing the average equilibrium (Ni-Ni) distance of atoms and also the binding energy of per atom...

full text

Structural and electronic properties of CO molecule adsorbed on the TiO2 supported Au overlayers: Insights from density functional theory computations

We have examined the adsorption behaviors of carbon monoxide (CO) molecule on TiO2 anatase supported Au overlayers. The results of density functional theory (DFT) calculations were used in order to gain insights into the effects of the adsorption of CO molecules on the considered hybrid nanostructures. We have investigated different adsorption geometries of CO over the nanoparticles....

full text

Structural and electronic properties of CO molecule adsorbed on the TiO2 supported Au overlayers: Insights from density functional theory computations

We have examined the adsorption behaviors of carbon monoxide (CO) molecule on TiO2 anatase supported Au overlayers. The results of density functional theory (DFT) calculations were used in order to gain insights into the effects of the adsorption of CO molecules on the considered hybrid nanostructures. We have investigated different adsorption geometries of CO over the nanoparticles....

full text

Electronic Structure: Density Functional Theory

Density functional theory (DFT) is a successful theory to calculate the electronic structure of atoms, molecules, and solids. Its goal is the quantitative understanding of materials properties from the fundamental laws of quantum mechanics. Traditional electronic structure methods attempt to find approximate solutions to the Schrödinger equation of N interacting electrons moving in an external,...

full text

My Resources

Save resource for easier access later


Journal title:
iranian journal of science and technology (sciences)

ISSN 1028-6276

volume 36

issue 4 2012

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023